Sugar-based micro/mesoporous hypercross-linked polymers with in situ embedded silver nanoparticles for catalytic reduction

نویسندگان

  • Qing Yin
  • Qi Chen
  • Li-Can Lu
  • Bao-Hang Han
چکیده

Porous hypercross-linked polymers based on perbenzylated monosugars (SugPOP-1-3) have been synthesized by Friedel-Crafts reaction using formaldehyde dimethyl acetal as an external cross-linker. Three perbenzylated monosugars with similar chemical structure were used as monomers in order to tune the porosity. These obtained polymers exhibit microporous and mesoporous features. The highest Brunauer-Emmett-Teller specific surface area for the resulting polymers was found to be 1220 m2 g-1, and the related carbon dioxide storage capacity was found to be 14.4 wt % at 1.0 bar and 273 K. As the prepared porous polymer SugPOP-1 is based on hemiacetal glucose, Ag nanoparticles (AgNPs) can be successfully incorporated into the polymer by an in situ chemical reduction of freshly prepared Tollens' reagent. The obtained AgNPs/SugPOP-1 composite demonstrates good catalytic activity in the reduction of 4-nitrophenol (4-NP) with an activity factor ka = 51.4 s-1 g-1, which is higher than some reported AgNP-containing composite materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of fine gold nanoparticles in mesoporous titania nanoparticles through different reduction methods.

This study focuses on the synthesis of gold nanoparticles-embedded mesoporous titania nanoparticles (Au@MTNs). Recently, mesoporous titania materials doped with noble metals such as gold, silver and platinum have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction met...

متن کامل

Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hyd...

متن کامل

Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Embedded in the Mesoporous Silica Matrices

Novel in-situ reduction approach was applied for the synthesis of palladium nanoparticles in the pores of mesoporous silica materials with grafted silicon hydride groups. Matrices possessing different structural properties (MCM-41, SBA-15 and Silochrom) were used. Samples were studied by nitrogen adsorption-desorption method, low-angle X-ray diffraction, transmission electron microscopy (TEM) a...

متن کامل

On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring.

Silver microflower arrays constructed by upright nanoplates and attached nanoparticles were fabricated inside a microfluidic channel, thus a robust catalytic microreactor for allowing in situ SERS monitoring was proposed. On-chip catalytic reduction shows that the silver microflowers have high catalytic activity and SERS enhancement.

متن کامل

Low-cost and eco-friendly phyto-synthesis of Silver nanoparticles by using grapes fruit extract and study of antibacterial and catalytic effects

In this research, silver nanoparticles (Ag NPs) were prepared by a low-cost, rapid, simple and ecofriendly approach using Grape fruit extract as a novel natural reducing and stabilizing agent. The product was characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017